شکل ۴-۱: مقایسه مقادیر واقعی و مقادیر پیش بینی مدلARIMA 87
شکل ۴-۲: مقایسه مقادیر واقعی و مقادیر پیش بینی مدلMLP 89
شکل ۴-۳: تابع عضویت متغیر شاخص قیمت ۹۰
شکل ۴-۴: تابع عضویت متغیر شاخصS&P500 90
شکل ۴-۵: تابع عضویت متغیر قیمت طلا ۹۱
شکل ۴-۶: تابع عضویت متغیر ارز دولتی ۹۱
شکل ۴-۷: تابع عضویت متغیر قیمت سبد نفتی ایران ۹۱
شکل ۴-۸: مقایسه مقادیر واقعی و مقادیر پیش بینی الگوریتم استخراج قانون ۹۳
شکل ۴-۹: مقایسه مقادیر واقعی و مقادیر پیش بینی مدلWNN-ARIMA 96
شکل ۴-۱۰: مقایسه مقادیر واقعی و مقادیر پیش بینی الگوریتم استخراج قانون از مدلWNN 98
شکل ۵-۱: نمودار مقایسه روش های پیش بینی ۱۰۲
فصل اول
مقدمه و
کلیات طرح تحقیق
۱-۱: مقدمه
رفع نا آگاهی از آینده از اصلی ترین دغدغه های خاطر انسان در طول تاریخ بوده است . آدمی همیشه به دنبال آن بوده که از آینده خود آگاه شده و آن را به نحوی که خود می خواهد سازمان دهد. در ابتدا چون توان پیش بینی صحیح و قابل اطمینان فراهم نبود، انسان متوسل به نیروهای فراطبیعی شد و آنگاه که توانایی عقلایی بیشتری پیدا کرد، درصدد استفاده از این توانایی برآمد و چون علم امکاناتی برای پیش بینی های او فراهم آورد، از این دستاورد بهره جست.(قدیری مقدم، ۱۳۸۸)
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
امروزه با رشد و توسعه اقتصاد جهانی و رقابتی شدن آن، تصمیم گیری درخصوص تخصیص بهینه منابع به مراتب بیش از پیش اهمیت پیدا کرده است. از این رو بازار بورس و اوراق بهادار به عنوان آینهی تمام نمای وضعیت اقتصادی کشورها و مکانی برای اینکه سرمایه گذاران بتوانند منابع و پس انداز خود را در آن سرمایه گذاری کنند، بیشترین توجه را به خود جلب کرده است.
تصمیمات مربوط به آینده، همواره با ابهام و عدم اطمینان روبروست و کسانی در رقابت پیروز می شوند که بتوانند آینده را پیش بینی و حداقل اطلاعاتی در خصوص آن داشته باشند و بر اساس آن اقدام به تصمیم گیری نمایند. با گسترش علم، امکان پیش بینی مطلوب آینده فراهم شده است. یکی از راه های کمک به سرمایه گذاران، ارائه الگوهای پیش بینی وضعیت بازار است. هرچه پیش بینی به واقعیت نزدیک تر باشد، مبنای تصمیمات صحیح تری قرار خواهد گرفت.
پیش بینی آینده در عرصه پویای اقتصاد و بازار سرمایه یکی از مهمترین مسائل مورد بحث درعلوم مالی بوده است. معمولاً به منظور پیش بینی وقایعی که در آینده اتفاق می افتد به اطلاعات به دست آمده از رویدادهای تاریخی اتکا می شود .به این ترتیب که داده های گذشته تجزیه و تحلیل می گردد تا از آن الگویی قابل تعمیم به آینده حاصل گردد، دراغلب روش های پیش بینی فرض بر این است که روابط بین متغیرها در آینده نیز ادامه خواهد داشت.(فلاح شمس، ۱۳۸۸)
بازار های مالی، به عنوان بخش مهم اقتصاد هر کشور ، بدلیل رابطه تنگاتنگ آن با ساختار اقتصادی، بسیار مورد توجه قرارگرفته اند. بورس اوراق بهادار نیز به عنوان یکی از مهمترین عناصر بازار سرمایه و توسعه اقتصادی هر کشور شناخته شده است. چرا که این بازار به عنوان پیش نیازی برای بسیاری از تحولات بازرگانی و اقتصادی مورد توجه است. تامین مالی پروژه های مالی – سرمایه ای بلند مدت از محل پس اندازها و نقدینگی بخش خصوصی در مطلوبترین شکل ممکن از طریق بورس اوراق بهادار تحقق می یابد.
۱-۲: بیان مساله
سرمایه گذاران حق دارند نسبت به آیندهی سرمایه گذاری خود نگران و حساس باشند، به این ترتیب به دنبال این هستند تا اطلاعاتی در مورد آینده بدست آورند. پیش بینی به سرمایه گذاران و تخصیص دهندگان منابع در تصمیم گیری صحیح کمک می کند و ریسک سرمایه گذاری را تا حد امکان کاهش می دهد. بیور می گوید":پیش بینی ها را می توان بدون اخذ تصمیم انجام داد ولی کوچکترین تصیم گیری را نمی توان بدون پیش بینی انجام داد".
روشن است که خصوصیت عدم اطمینان، امر نامطلوبی است و از طرفی برای سرمایه گذارانی که بازار بورس را به عنوان مکان سرمایه گذاری انتخاب نموده اند، این خصوصیت اجتناب ناپذیر است. بنابراین بطور طبیعی تمام تلاش های سرمایه گذار کاهش عدم اطمینان است و از این جهت پیش بینی بازار بورس یکی از ابزارهای کاهش عدم اطمینان می باشد.
یکی از مفروضات مهمی که در بازارهای مالی وجود دارد، فرضیه بازار کارا است. بر اساس این فرضیه قیمت اوراق بهادار به ارزش ذاتی آنها نزدیک است، یعنی قیمت تعیین شده دربازار شاخص مناسبی از ارزش واقعی اوراق بهادار است.(جهانخانی،۱۳۷۶) از جمله مواردی که فرضیه بازار کارا را ضعیفتر می کند، قابلیت پیش بینی در این بازارها است. (نمازی،۱۳۸۶) آنچه سرمایه گذاران اعم از حقیقی و حقوقی را برای سرمایه گذاری در سهام شرکتها نگران می کند، نوسانات شدید قیمت های سهام میباشد.
پیش بینی قیمت سهام یکی از مهمترین و جذاب ترین فعالیت ها برای مدیران داخلی و سرمایه گذاران خارجی شرکت می باشد. در خارج از شرکت، سرمایه گذاران از این پیش بینی به عنوان اساس و مبنای انتخاب سبد سرمایه گذاری(پرتفولیو[۱]) بهینه و سودآور استفاده می کنند؛ از طرف دیگر در داخل شرکت، هدف مدیران که حداکثر سازی ثروت سهامدارن بوده از این پیش بینی در اتخاذ تصمیمات مهم و بحرانی از جمله بودجه بندی عملیاتی، سرمایه ای و تخصیص بهینه منابع به منظور دستیابی به اهداف سازمان استفاده می کنند. بنابراین روشن است که دقت پیش بینی قیمت سهام بسیار مهم و حیاتی است؛ زیرا مبنای تصمیم گیری های داخلی و خارجی قرار می گیرد. از این رو انتخاب روش پیش بینی یکی از مهم ترین تصمیمات پیش بینی کنندگان است.
بیشتر مطالعاتی که در گذشته در مورد پیش بینی قیمت انجام شده، از مدل سازی خطی و غیر خطی برای پیش بینی استفاده کرده و به مقایسه و بررسی دقت این روش ها پرداختند. در این تحقیق قصد داریم با بهره گرفتن از ترکیب مدل های غیرخطی(تبدیل موجک[۲]، شبکه های عصبی[۳] و الگوریتم ژنتیک[۴]) و مدلهای خطی به مدل سازی پیش بینی قیمت سهام بپردازیم.
۱-۳: ضرورت و اهمیت تحقیق
سرمایه گذاری و انباشت سرمایه در تحول اقتصادی کشور نقش بسزایی داشته است. اهمیت این عامل و نقش موثر آن را می توان به وضوح در سیستم کشورهایی با نظام سرمایه داری مشاهده کرد. بدون شک بورس یکی از مناسب ترین جایگاهها جهت جذب سرمایه های کوچک و استفاده از آنها جهت رشد یک شرکت، در سطح کلان و نیز رشد شخصی فرد سرمایه گذار است. از آنجایی که هدف و تعریف سرمایه گذاری، به تعویق انداختن مصرف جهت مصرف بیشتر در آینده است، افراد با سرمایه گذاری انتظار دستیابی به سود مورد انتظار خود را دارند. بنابراین مهمترین امر در این زمینه، خرید یک سهم به قیمت پایین و فروش آن به قیمت بالاتر است که این موضوع به معنی پیش بینی قیمت سهام است.
از دوران گشایش بازارهای اوراق بهادار همواره این فکر وجود داشته است که به کمک روشی، قیمت سهام را پیش بینی کنند و در این راه سخت افزارها و نرم افزارها، تحلیل های متفاوت مالی و مانند اینها ابداع شده و مورد استفاده قرار گرفت.(حق پرست،۱۳۸۶)
۱-۴: اهداف تحقیق
هدف اصلی تحقیق، ارائه مدلی برای پیش بینی قیمت سهام با بکارگیری شبکه عصبی درک چندلایه[۵] و تکنیک استخراج قانون از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک[۶] و ترکیب مدلهای مزبور با مدل خطی [۷]ARIMA در شرکت های عضو بورس و اوراق بهادار تهران است. علاوه بر هدف اصلی تحقیق، اهداف فرعی دیگری نیز مورد نظر هستند که در سطح پایین تری از هدف اصلی قرار می گیرند. این اهداف عبارتند از:
-کمک به سرمایه گذاران جهت اتخاذ تصمیم های صحیح و مطلوب
-کمک به مدیران برای انجام وظیفهی حداکثر سازی ثروت سهامدارن
-تعیین مدل بهینه از میان مدل های فوق برای پیش بینی قیمت سهام
۱-۵: سؤالات و فرضیه های تحقیق
پس از بررسی مسئله و اهداف تحقیق و مطالعات مقدماتی درباره پاسخ های احتمالی، سؤالات تحقیق به شرح زیر قابل طرح است:
-
- آیا سری زمانی خطی ARIMA مدل مناسبی برای پیش بینی قیمت سهام است؟
-
- آیا شبکه عصبی درک چند لایه(MLP) در پیش بینی قیمت سهام بر مدل خطی ARIMA برتری دارد؟
-
- آیا تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد؟
-
- آیا تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک در پیش بینی قیمت سهام بر شبکه عصبی درک چند لایه(MLP) برتری دارد؟
-
- آیا ترکیب مدل ARIMA با شبکه عصبی برای پیش بینی قیمت سهام با بهره گرفتن از تبدیل موجک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد؟
-
- آیا مدل ترکیبی تبدیل موجک، شبکه عصبی و الگوریتم ژنتیک فازی در پیش بینی شاخص قیمت نسبت به بقیه مدلهای ارائه شده از دقت بالاتری برخوردار است؟
بنابراین فرضیات اصلی تحقیق به صورت زیر خواهد بود:
فرضیه۱) مدل خطی ARIMA مدل مناسبی برای پیش بینی قیمت سهام بدست می دهد.
فرضیه۲) شبکه عصبی درک چند لایه(MLP) در پیش بینی قیمت سهام از مدل خطی ARIMA عملکرد بهتری را نشان می دهد.
فرضیه۳) تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد.
فرضیه۴) مدل ترکیبی ARIMA، شبکه عصبی درک چند لایه و تبدیل موجک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد.
فرضیه۵) مدل ترکیبی تبدیل موجک، شبکه عصبی درک چند لایه و الگوریتم ژنتیک فازی در مقایسه با سایر مدلها ارائه شده از دقت بالاتری برخوردار است.
۱-۶: روش انجام تحقیق
هدف اصلی تحقیق حاضر، پیش بینی قیمت سهام با بهره گرفتن از مدل سری زمانی خطی ARIMA و شبکه عصبی و همچنین ترکیب شبکه عصبی درک چندلایه یا تکنیک استخراج قانون از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک و استفاده از تبدیل موجک برای ترکیب مدل خطی ARIMA و شبکه عصبی و همچنین استخراج قانون از مدل ترکیبی تبدیل موجک عصبی و تعیین مدل بهینه با مقایسه نتایج حاصل از روشهای پیش بینی مورد استفاده است. تبدیل موجک، شبکه های عصبی و الگوریتم ژنتیک از جدیدترین و پیشرفته ترین روش های مدلسازی و پیش بینی است که چندی است از این روش ها برای پیش بینی فاکتورهای حسابداری و مالی نیز استفاده می شود. در این پژوهش ابتدا پیش بینی شاخص قیمت با بهره گرفتن از مدل سری زمانی ARIMA صورت گرفت، سپس این پیش بینی با بهره گرفتن از شبکه عصبی مصنوعی تکرار شد، در مرحله سوم برای بدست آوردن الگوی شبکه عصبی از الگوریتم ژنتیک فازی استفاده شد، سپس با بهره گرفتن از تبدیل موجک سری زمانی تا سه مرحله شکافته شد، با در نظر گرفتن این نکته که مدلهای خطی در سریهای هموار نتایج بهتری دارند؛ سری همار شده با بهره گرفتن از مدل خطی ARIMA پیش بینی شد و سری تابع جزئیات با بهره گرفتن از شبکه عصبی مصنوعی در انتهای این مرحله با بهره گرفتن از معکوس تبدیل موجک پیش بینیهای صورت گرفته با هم ترکیب شده و پیش بینی سری اصلی حصل گردید و در نهایت در الگوریتم استخراج قانون از شبکه های عصبی(الگوریتم ژنتیک فازی) به جای شبکه عصبی از مدل ترکیبی تبدیل موجک و شبکه عصبی استفاده گردید. در ادامه روشهای مورد استفاده برای پیش بینی به تفکیک توضیح داده می شود.
۱-۶-۱: مدل ARIMA