گراسیا آلمانزا و تی سانگ[۷۴] در سال ۲۰۰۷ از برنامه ریزی ژنتیک برای یافتن نوسانات مهم در قیمت سهام استفاده نمودند. با بهره گرفتن از این روش نشان دادند که GP قابلیت یافتن مواردی نادری که با عدم توازن شدید مجموعه داده ها مواجهیم را دارد.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
وانگ[۷۵] (۲۰۰۷) از شبکه های عصبی غیر خطی برای پیش بینی قیمت سهام استفاده کرده است. وی در این مطالعه روش و ناپایداری نامتقارن هیبریدی را در شبکه های عصبی مصنوعی به کار برده است تا با بهره گرفتن از این روش خطای پیش بینی را کاهش دهد. نتایج بدست آمده حاکی از این است که روش ناپایداری GREY-GIR-GARCH قابلیت پیش بینی بیشتری نسبت به سایر روشهای ناپایداری دارد.
لین و همکاران[۷۶] (۲۰۰۷) از الگوریتم ژنتیک برای پیش بینی بازار سهام استفاده کردند. نکته مهم برای موفقیت یک قانون تجارت انتخاب مقادیر برای همه پارامترها و ترکیبات آنها می باشد. لیکن دامنه پارامترها در یک محدوده بزرگ تغییر می کند و مشکلی که وجود دارد یافتن ترکیب بهینه پارامتر ها است. در این مقاله از الگوریتم ژنتیک برای فائق آمدن بر این مشکل استفاده شده است.
راج کومار و سیتابرا[۷۷] در سال ۲۰۰۷ به بررسی تغییرات رفتار جمعی قیمت سهام در یک بازار در حال رشد پرداختند. در این مقاله از یک ماتریس همبستگی متقاطع برای تغییرات قیمت سهام بازار بورس هند استفاده شده است.
هیوپ ره[۷۸] در سال ۲۰۰۷ از مدلهای هیبریدی، شبکه های عصبی و سری زمانی برای پیش بینی تلاطم[۷۹] شاخص قیمت سهام با دو رویکرد انحرافی و مستقیم استفاده کرده است.
چنگ و همکارانش[۸۰] در سال ۲۰۰۷ مدل سری زمانی فازی دو عاملی را برای پیش بینی شاخص سهام به کار بردند. در این مقاله شاخص سهام و حجم معامله به عنوان عواملی در نظر گرفته شده اند که در پیش بینی شاخص قیمت موثرند. نتایج حاکی از قابلیت خوب این مدل در پیش بینی شاخص سهام میباشد.
چن و همکارانش[۸۱] در سال ۲۰۰۷ از سری زمانی فازی بر اساس رشته Fibonacci در پیش بینی قیمت سهام استفاده نمودند. در این تحقیق یک دوره زمانی پنج ساله از داده ها برای TSMC[82] ویک دوره زمانی ۱۳ساله برای TAIEX[83] در نظر گرفته شده است. مدل بدست آمده نسبت به مدلهای سری زمانی فازی متداول برتری دارد.
ام تی سانگ و همکارانش[۸۴] در سال ۲۰۰۷ کاربرد NN5[85] را در پیش بینی قیمت سهام هنگ کنگ بررسی نمودند. این سیستم بر روی داده های سهام دو شرکت سهامی بانکداری هنگ کنگ و شانگهای آزمون شده است. این سیستم نرخ موفقیت کلی بیش از ۷۰ درصد را نشان می دهد.
سال سیدو سانز[۸۶] و همکارانش در سال ۲۰۰۵ کاربرد برنامه ریزی ژنتیک را در پیش بینی ورشکستگی شرکتهایی که فاقد بیمه عمر هستند، نشان دادند. در این مقاله کارکرد برنامه ریزی ژنتیک با سایر روشهای طبقه بندی مقایسه شده است.
پای و لین[۸۷] در سال ۲۰۰۵ از یک مدل هیبریدی آریما و ماشینهای بردار حمایتی[۸۸] در پیش بینی قیمت سهام تایوان استفاده نمودند. نتایج محاسبات بدست آمده از این تحقیق بسیار امیدوارانه است.
گروسان و همکارانش[۸۹] در سال ۲۰۰۵ از یک روش جدید برنامه ریزی ژنتیک با نام Multi Expression Programming برای پیش بینی دو شاخص سهام استفاده نمودند. عملکرد این روش را با یک شبکه عصبی مصنوعی که در آن الگوریتم Levenberg Marquardt استفاده شده بود، مدل نرو فازی تاگاکی سونجو[۹۰]، تفاضلی از شبکه عصبی پیش رونده[۹۱] و ماشین بردار پایه[۹۲] مقایسه نمودند.
ال تلبانی[۹۳] در سال ۲۰۰۴ بازده سهام مصر را با بهره گرفتن از روش های برنامه ریزی ژنتیک پیش بینی نمود.
پتوین و همکارانش[۹۴] در سال ۲۰۰۴ تحقیقی با عنوان ایجاد قوانین تجارت در بازار سهام با بهره گرفتن از برنامه ریزی ژنتیک انجام دادند. در این مقاله از برنامه ریزی ژنتیک به عنوان ابزاری برای ایجاد قوانین تجاری در کوتاه مدت در بازار سهام استفاده شده است. این محاسبات برای ۱۴ شرکت کانادایی در بورس تورنتو اجرا شده است. نتایج بدست آمده از این تحقیق نشان میدهد که روش زمان بندی این بازار ممکن است جایگزین مناسبی برای خرید و فروش[۹۵] باشد. همچنین نتایج حاکی از این است که قوانین داد و ستد ایجاد شده توسط GP زمانیکه بازار پایدار و یا در حال سقوط میباشد، مفید است. از طرف دیگر در شرایطی که بازار در حال صعود است نتایج به دست آمده از روش GP با روش خرید و فروش مطابقت ندارد.
فرانس ورث و همکارانش[۹۶] در سال ۲۰۰۴ از بزنامه ریزی ژنتیک برای پیش بینی بازده روزانه وجوه شاخص S&P500 استفاده کردند که به فرضیه کارایی بازار اشاره دارد. S&P500 یکی از شاخص هایی است که بیشترین مطالعه در سطح جهان بر روی آن انجام شده است.
ال تلبانی[۹۷] در سال ۲۰۰۴ بازده سهام مصر را با بهره گرفتن از روش های برنامه ریزی ژنتیک پیش بینی نمود.
پتوین و همکارانش[۹۸] در سال ۲۰۰۴ تحقیقی با عنوان ایجاد قوانین تجارت در بازار سهام با بهره گرفتن از برنامه ریزی ژنتیک انجام دادند. در این مقاله از برنامه ریزی ژنتیک به عنوان ابزاری برای ایجاد قوانین تجاری در کوتاه مدت در بازار سهام استفاده شده است. این محاسبات برای ۱۴ شرکت کانادایی در بورس تورنتو اجرا شده است. نتایج بدست آمده از این تحقیق نشان میدهد که روش زمان بندی این بازار ممکن است جایگزین مناسبی برای خرید و فروش[۹۹] باشد. همچنین نتایج حاکی از این است که قوانین داد و ستد ایجاد شده توسط GP زمانیکه بازار پایدار و یا در حال سقوط میباشد، مفید است. از طرف دیگر در شرایطی که بازار در حال صعود است نتایج به دست آمده از روش GP با روش خرید و فروش مطابقت ندارد.
فرانس ورث و همکارانش[۱۰۰] در سال ۲۰۰۴ از بزنامه ریزی ژنتیک برای پیش بینی بازده روزانه وجوه شاخص S&P500 استفاده کردند که به فرضیه کارایی بازار اشاره دارد. S&P500 یکی از شاخص هایی است که بیشترین مطالعه در سطح جهان بر روی آن انجام شده است.
جولیانا ییم (۲۰۰۲)[۱۰۱] مطالعه ای جهت مقایسه روش های پیش بینی شبکه عصبی و روشهای پیش بینی کلاسیک (ARMA, GARCH) انجام داده است. معیار ارزیابی MSE و می باشد. نتایج نشان دهنده برتری شبکه های عصبی نسبت به نمونههای ARMA وGARCH است.
کابودان (۲۰۰۰)[۱۰۲] از برنامه ریزی ژنتیک برای پیش بینی روزانه قیمت سهام ۶ شرکت آمریکایی استفاده نمود و بر اساس نتایج بدست آمده از این پیش بینی یک استراتژی تجارت را ارائه کرده است. همچنین از این روش استفده کرده است تا نشان دهد قیمتهای سهام قیمت های قابل پیش بینی هستند.
تان، پروخوف و ونچ (۱۹۹۵)[۱۰۳] سیستمی را طراحی نمودند که تغییرات قابل ملاحظه کوتاه مدت قیمت سهام را پیش بینی می کند. ابتدا پیش پردازشی روی داده ها صورت گرفته و سپس شبکه عصبی مدل سازی می شود که موقعیتهای خیلی خوب سوددهی را تخمین می زند.
ریفنز، زاپرانیس و فرانسیس (۱۹۹۴)[۱۰۴] با مدل سازی رفتار قیمت سهام توسط شبکه های عصبی، عملکرد آن را با مدل های رگرسیون مقایسه نموده اند، در این تحقیق از شبکه های عصبی به عنوان یک جایگزین برای تکنیکهای آماری کلاسیک و از این شبکه ها برای پیش بینی سهام شرکتهای بزرگ استفاده شده است. نتایج نشان می دهد که شبکه های عصبی نسبت به تکنیکهای آماری عملکرد بهتری دارند و مدلهای بهتری ارائه می دهند.
یون و اسویلز (۱۹۹۱)[۱۰۵] از اساتید دانشگاه میسوری برای پیش بینی قیمت سهام از یک شبکه عصبی چهار لایه با روش یادگیری پس انتشار (BP) استفاده نموده اند که نتیجه حاصل از آن به میزان قابل توجهی بهتر از روش سنتی می باشد. دقت شبکه در روش شبکه عصبی ۷۷٫۵% و روش سنتی ۶۵% می باشد.
۲-۴: نتیجه گیری و خلاصه فصل
در این فصل ابتدا مبانی نظری پژوهش بیان شد و سپس به بیان انواع روشهای پیش بینی توضیح داده شد و سپس بصورت خلاصه نتایجی از تحقیقات داخلی و خارجی صورت گرفته پیرامون پیش بینی شاخص قیمت سهام بیان گردید، با توجه به مطالب بیان شده در این فصل مواردی همچون زیر را میتوان نام برد که محقق در این پژوهش دنبال پاسخگویی به آن میباشد:
-
- در برخی از تحقیقات صورت گرفته مدلهای خطی بر مدلهای غیر خطی برتری نسبی را نشان میدهد ولی در عمده تحقیقات صورت گرفته این برتری متعلق به مدلهای غیر خطی است، دلیل این باید در سری زمانی شاخص قیمت جستوجو کرد، لذا محققین در این پژوهش با آگاهی از این موارد به دنبال ارائهای روشی جدید برای پیش بینی شاخص قیمت میباشد، بطوریکه هم اثرات خطی و هم غیرخطی سری زمانی شاخص قیمت در نظر گرفته شود، این مهم را با بهره گرفتن از روش تبدیل موجک به منظور ترکیب مدلهای خطی و غیرخطی دنبال خواهیم نمود.
-
- در مدلهای غیر خطی مورد مطالعه در تحقیقات پیشین هیچگونه روابطی قابل فهم استخراج نگردیده است تا سرمایه گذاران و سایر استفادهکنندگان بتوانند با توجه به روابط استخراج شده اقدام به پیش بینی آینده تصمیمات خویش باشند، ما در این پژوهش به دنبال استخراج روابطی منطقی بین داده های پژوهش هستیم بطوریکه الگوهای استفاده شده توسط مدلهای غیر خطی برای خواننده قابل فهم باشد، این مهم در این پژوهش با ترکیب الگوریتم ژنتیک با تئوری فازی صورت خواهد گرفت.
فصل سوم
روش تحقیق
۳-۱: مقدمه
هدف از نگارش این فصل، بحث و بررسی پیرامون روش و متدولوژی تحقیق است. ابتدا، روش انجام تحقیق بیان خواهد شد سپس به معرفی جامعه آماری تحقیق و معرفی متغیرهای مورد استفاده در تحقیق می پردازیم. در قسمت بعدی فرضیات تحقیق بیان می شود. سپس مدلهای مورد استفاده توضیح داده می شود. در نهایت روش های متداول ارزیابی عملکرد مدلهای پیش بینی جهت انتخاب مدل پیش بینی برتر را بر میشماریم.
۳-۲: روش تحقیق
این تحقیق از نظر هدف، کاربردی و از نوع تحقیقات شبه تجربی است. در این تحقیق به منظور پیش بینی شاخص قیمت بورس اوراق بهادار تهران؛ از مدل سری زمانی ARIMA، شبکه عصبی درک چندلایه(MLP) و تکنیک استخراج قانون از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک فازی و استفاده از تبدیل موجک به منظور تفکیک نوسانات داده ها و همچنین کاهش سطح خطای مدلهای مورد استفاده میباشد. اما با توجه به اینکه به طور مطلق نمی توان در مورد توان پیش بینی یک مدل نظری داد، پس باید از مدل دیگری برای مقایسه نتایج استفاده کرد. از این رو، به منظور انتخاب مدل بهینه، عملکرد آنها مورد مقایسه قرار گرفت. این تحقیق نسبت به تحقیقات گذشته دارای دو مزیت ملموس و مهم است؛ اول اینکه در این تحقیق به منظور بهبود مدل پیش بینی از تبدیل موجک استفاده شده است، همچنین از آنجائیکه شبکه های عصبی مانند جعبهی سیاه است و چگونگی روابط بین متغیرها را نمایان نمی کند، از این رو از تکنیک استخراج قانون استفاده شده است؛ تکنیک استخراج قانون مورد استفاده در این پژوهش الگوریتم ژنتیک فازی میباشد. مراحل کلی تحقیق به این صورت میباشد که بر مبنای ادبیات تحقیق، مدلهای تحقیق تدوین گردید. سپس متغیرهای مورد نظر تحقیق از منابع اطلاعاتی و پایگاه های اطلاعاتی مختلف استخراج شد و در نهایت مدلهای مورد استفاده برای مورد برازش قرار گرفت. درنهایت برای تعیین مدل برتر از معیار های ارزیابی عملکرد مدل استفاده گردید. لازم به ذکر است تجزیه و تحلیل داده ها با بهره گرفتن از نرم افزار MATLAB و نرم افزار اقتصادی Eveiws انجام گرفت.
۳-۳: جامعه آماری و متغیرهای تحقیق
۳-۳-۱: جامعه آماری
از آنجائیکه بازار سرمایه در هر کشوری آینهی تمام نمای وضعیت اقتصادی آن کشور است و شاخص قیمت بیانگر وضعیت بازار سرمایه در زمان فعال بودن بازار میباشد لذا سری زمانی داده های روزانه شاخص قیمت بورس اوراق بهادار تهران از سال ۱۳۸۴ لغایت ۱۳۸۹ به عنوان جامعه آماری تحقیق انتخاب گردیده است. داده های مزبور از سایت سازمان بورس و اوراق بهادار تهران استخراج گردیده است.
۳-۳-۲: متغیرهای تحقیق
در این تحقیق با توجه به نتایج تحقیق رعیت(۱۳۸۸)، سجادی و همکاران(۱۳۸۸) و صمدی و همکاران(۱۳۸۷) قیمت روزانه سبد نفت ایران، قیمت جهانی طلا، قیمت روزانه ارز دولتی و شاخص روزانه S&P500 بورس نیویورک به عنوان متغیرهای مستقل(ورودی شبکه عصبی) انتخاب شدند، داده های فوق به ترتیب از سایت کتابخانه سازمان اوپک، پایگاه اطلاعاتی سایت بانک جهانی، سایت بانک مرکزی جمهوری اسلامی ایران و پایگاه اطلاعاتی سایت بانک جهانی برای دوره مورد مطالعه استخراج گردید.
۳-۴: سوالات و فرضیه های تحقیق
سؤالات تحقیق به شرح زیر قابل طرح است:
-
- آیا سری زمانی خطی ARIMA مدل مناسبی برای پیش بینی قیمت سهام است؟
-
- آیا شبکه عصبی درک چند لایه(MLP) در پیش بینی قیمت سهام بر مدل خطی ARIMA برتری دارد؟
-
- آیا تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد؟
-
- آیا تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک در پیش بینی قیمت سهام بر شبکه عصبی درک چند لایه(MLP) برتری دارد؟
-
- آیا ترکیب مدل ARIMA با شبکه عصبی برای پیش بینی قیمت سهام با بهره گرفتن از تبدیل موجک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد؟
-
- آیا مدل ترکیبی تبدیل موجک، شبکه عصبی و الگوریتم ژنتیک فازی در پیش بینی شاخص قیمت نسبت به بقیه مدلهای ارائه شده از دقت بالاتری برخوردار است؟
بنابراین فرضیات اصلی تحقیق به صورت زیر خواهد بود:
فرضیه۱) مدل خطی ARIMA مدل مناسبی برای پیش بینی قیمت سهام بدست می دهد.
فرضیه۲) شبکه عصبی درک چند لایه(MLP) در پیش بینی شاخص قیمت نسبت به مدل خطی ARIMA عملکرد بهتری را نشان می دهد.
فرضیه۳) تکنیک استخراج قانون(ExtractionRule ) از شبکه های عصبی با بهره گرفتن از الگوریتم ژنتیک نتیجه قابل قبولی برای پیش بینی قیمت سهام بدست می دهد.