مواد اولیه، سنتز مشتقات کومارین بوسیله فنول و– کتواستر در حضور اسید برونستد قوی یا اسید لووییس بعنوان کاتالیست می باشد.
الف: تشکیل توتومری (کتو - انول)
شکل(۱-۱۰) : مکانیسم پکمن تشکیل توتومری
ب:تشکیل شاکله اصلی کومارین در اثرواکنش افزایشی مایکل
شکل(۱-۱۱) : مکانیسم پکمن مرحله ، افزایش مایکل
ج: حذف آب و بدنیال آن خروج هیدروژن وتشکیل محصول نهایی
شکل(۱-۱۲) : مکانیسم واکنش پکمن تشکیل کومارین
۱-۷- متغیر های اساسی
متغیر های اصلی و اجزای اصلی سنتز مشتقات کومارین به روش پکمن، شامل فنول ها،و – کتواستر می باشد.
۱-۷-۱- فنول ها
بطور کلی اکثر مشتقات فنول می توانند در سنتز کومارین به روش پکمن شرکت کنند ولی مشتقاتی از فنول که حاوی گروه های دهنده الکترون می باشند باعث ایجاد محصول با راندمان بالا ومدت زمان کوتاهی برای رسیدن به محصول اصلی را فراهم می کنند. هرچند که مشتقات الکترون کشنده هم مورد استفاده قرار می گیرند چند مورد از مشتقات فنول را در ادامه مشاهده می کنیم.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
۲ ۳ ۴
۵ ۶ ۷
۸ ۹ ۱۰
شکل(۱-۱۳) : انواع مشتقات فنول
۱-۷-۲:-کتو استرها
بیشتر از اتیل استو استات خطی وهم چنین می توان از - کتواسترهای حلقوی نیز به مانند نمونه های زیرمی توان در سنتز پکمن استفاده کرد.(مکانیسم واکنش ها از نوع پکمن در حضور کاتالیزور های اسیدی می باشد.)
شکل(۱-۱۴) : استفاده از انواع، - کتو استر های حلقوی جهت تهیه مشتقات کومارین
۱-۸- تعریف نانو مواد
یک نانومتر برابر با یک میلیاردم متر (۹-۱۰ متر) می باشد. این اندازه ۱۸۰۰۰ بار کوچکتر از قطر یک تار موی انسان است. به طور میانگین ۳ تا ۶ اتم در کنار یکدیگر طولی معادل یک نانومتر را می سازند که این خود به نوع اتم بستگی دارد. به طور کلی، فناوری نانو، گسترش، تولید و استفاده از ابزار و موادی است که ابعادشان در حدود ۱-۱۰۰ نانومتر می باشد. فناوری نانو به سه سطح قابل تقسیم است: مواد، ابزارها و سیستم ها. موادی که در سطح نانو در این فناوری به کار می رود، را نانو مواد می گویند. ماده ی نانو ساختار، به هر ماده ای که حداقل یکی از ابعاد آن در مقیاس نانومتری (زیر ۱۰۰ نانومتر) باشد اطلاق می شود. این تعریف به وضوح انواع بسیار زیادی از ساختارها، اعم از ساخته دست بشر یا طبیعت را شامل می شود. منظور از یک ماده ی نانو ساختار، جامدی است که در سراسر بدنه آن انتظام اتمی، کریستال های تشکیل دهنده و ترکیب شیمیایی در مقیاس چند نانومتری گسترده شده باشند. در حقیقت این مواد متشکل از کریستال ها یا دانه های نانومتری هستند که هر کدام از آنها ممکن است از لحاظ ساختار اتمی، جهات کریستالوگرافی یا ترکیب شیمیایی با یکدیگر متفاوت باشند. همه مواد از جمله فلزات، نیمه هادی ها، شیشه ها، سرامیک ها و پلیمرها در ابعاد نانو می توانند وجود داشته باشند. همچنین محدوده فناوری نانو می تواند به صورت ذرات بی شکل(آمورف)، کریستالی، آلی، غیرآلی و یا به صورت منفرد، مجتمع، پودر، کلوئیدی، سوسپانسیونی یا امولسیون باشد.
۱-۹- نانو کاتالیست
کاتالیست، گونه ای است که انرژی فعال سازی واکنش (انرژی اولیه برای انجام واکنش) را کاهش داده و در نتیجه سرعت واکنش را افزایش می دهد. ، رایج ترین کاتالیست ها از فلزات واسطه هستند.
کاتالیست ها به دو دسته ی همگن و ناهمگن تقسیم می شوند. کاتالیست همگن[۱۲]، تک اتم، یون یا مولکول است و با واکنش دهنده ها هم فاز می باشد. به بیان دیگر، ذرات کاتالیست همگن می توانند به راحتی در مخلوط واکنش حل شوند. کاتالیست همگن در واکنش مصرف شده و مجددا تولید (بازیابی) می شود. فعالیت بسیار بالا، گزینش پذیری و بازده خوب ، از محاسن این گونه از کاتالیست می باشد. بهبود در عملکرد کاتالیست های همگن می تواند با اتصال گروه های متفاوت آلی و معدنی به ذره اصلی فراهم شود. مشکل اصلی در فناوری کاتالیست های همگن در آنجاست که پس از اتمام واکنش، جداسازی کاتالیست حل شده از مخلوط نهایی کار ساده ای نیست. این مشکل به ویژه در زمانی که کاتالیست در مقادیر کم مصرف می شود، خود یک چالش بزرگ است.
کاتالیست ناهمگن[۱۳]، با واکنش دهنده ها در یک فاز نیست. اندازه و خصوصیت ذرات کاتالیست ناهمگن به صورتی است که به راحتی در محیط واکنش حل نمی شود؛ از این رو فعالیت آن محدود می گردد (بازده کل واکنش کاهش می یابد). برخلاف کاتالیست های همگن، کاتالیست های ناهمگن به راحتی (با صرف هزینه، زمان و مواد کمتر) از مخلوط واکنش جدا می شوند و موجب ناخالصی محصولات نمی گردند. برای آنکه کمبود سطح فعال در این گونه ترکیبات جبران شود، استفاده از یک بستردر نقش تکیه گاه کاتالیست، ضروری است.بستر[۱۴] معمولایک ساختار متخلخل [۱۵] یا سطح فعال بالا میباشد. .
کاتالیست مناسب، باید سطح فعال زیاد داشته و قابل جداسازی باشد. فناوری نانو، می تواند سطح فعال بسیار زیادی را برای کاتالیست فراهم آورد. با آنکه سطح فعال نانوکاتالیست ها بسیار بالاتر از کاتالیست های معمولی است، سطح فعال یک نانوکاتالیست همواره از یک کاتالیزور همگن پایین تر است (کاتالیزور همگن با انحلال خود در تماس کامل با محتویات واکنش قرار دارد). در مقابل، نانوذرات کاتالیستی به دلیل ابعاد بزرگ تر نسبت به ذرات کاتالیست همگن، در محلول واکنش حل نشده و به سادگی قابل جداسازی هستند. سطح فعال زیاد به همراه قابلیت جداسازی کاتالیست در پایان واکنش، از نانوکاتالیست ها پلی میان کاتالیست های همگن و ناهمگن ساخته است. ممکن است فرایند پیچیده تولید برخی از نانوکاتالیست ها هزینه بر به حساب بیاید، اما از آنجا که فناوری نانو مقدار کاتالیست، انرژی و زمان مورد نیاز برای انجام واکنش را تقلیل می دهد، این مورد قابل چشم پوشی است.
۱-۹-۱- ویژگی های نانو کاتالیست
حداکثر سطح فعال به ازای واحد جرم و حجم: هر چه سطح فعال (سطح در دسترس برای انجام واکنش) به خصوص برای یک کاتالیست ناهمگن بیشتر باشد، جایگاه های فعال واکنش پذیر افزایش یافته و بازده کاتالیست بالا می رود. با فراهم آوردن سطح بیشتر برای یک ساختار کاتالیستی، در مقدار مصرفی نانوکاتالیست صرفه جویی شده و با افزایش واکنش دهنده های درگیرشونده در واکنش، سرعت واکنش نیز بیش تر می شود.
شکل و اندازه ی قابل کنترل: برای رسیدن به بیشینه فعالیت، باید بهترین و مناسب ترین اندازه ی نانوذره مشخص شود؛ در روش های تولید نانوذرات، راه های زیادی برای کنترل ابعاد وجود دارد. براساس محاسبات رایانه ای و شبیه سازی می توان به اندازه مناسب برای یک نانوذره با بیش ترین فعالیت و در عین حال بیشترین پایداری دست یافت. بهترین کاتالیست ها از فلزات گران بها مثل پلاتین (Pt)، طلا (Au) و پالادیوم (Pd) تشکیل یافته اند. تخمین دقیق تر بهترین اندازه ی این نانوذرات در جهت دستیابی به بالاترین فعالیت کاتالیستی، به صرفه-جویی در مصرف این ترکیبات کمک زیادی میکند.
قابلیت جداسازی از مخلوط واکنش: نانوکاتالیست ها، چه همگن و چه ناهمگن، می-توانند به راحتی از محصولات و باقی مانده ی اضافی واکنش گرها جدا شوند. همان گونه که ذکر شد، به دلیل بزرگی نانوذرات در مقایسه با اتم ها و مولکول ها، این ترکیبات در محیط واکنش قابل حل نبوده و معلق می مانند. به عنوان مثال، نانوذرات مغناطیسی کاربرد بسیار زیادی در حوزه ی کاتالیست دارند. زمانی که نانوذرات مغناطیسی به عنوان کاتالیست در واکنش به کار می روند، در پایان می توانند توسط اعمال یک میدان مغناطیسی مناسب از محیط جداسازی و بازیابی شوند.
گزینش پذیری و بازده بالا: یک نانوکاتالیست، واکنش را در یک مسیر خاص و با گزینش مواد اولیه پیش می برد. این به آن معنی است که ترکیبات ناخواسته کمتر واکنش های فرعی را باعث می شوند و از تولید محصولات جانبی در طول فرایند جلوگیری می شود. همچنین نانوکاتالیست با سطح فعال بسیار بالای خود، بازده واکنش را در مسیر اصلی خود افزایش می دهد. به عبارت دیگر می توان گفت که حجم بالاتری از مواد اولیه به محصول نهایی تبدیل می شوند. مخلوط نهایی واکنش در این حالت بیشتر متشکل از محصول اصلی است و در صد کمی از محصولات جانبی و واکنشگرهای باقی مانده (آن هایی که در واکنش شرکت نکرده اند) وجود دارد. این فرایند، روند خالص سازی و استخراج محصول (برای مثال یک دارو) را آسان و کم هزینه می کند.
استعداد کلوخه ای شدن: نانوذرات در پایدارترین حالت ساختاری خود نیستند، فعالیت سطحی بسیار بالا داشته و از این رو مستعد به هم چسبیدن، کلوخه ای شدن و در نتیجه از دست دادن ابعاد نانو می باشند. اگر فرایند کلوخه ای شدن برای یک نانوکاتالیست اتفاق بیفتد، فعالیت آن کاهش چشم گیری پیدا می کند و به اصطلاح، غیرفعال می شود.
تنوع بالا و قابلیت اصلاح شیمیایی: به علت فعالیت سطحی بالا، گروه های مختلف آلی می توانند به سطح نانوکاتالیست ها متصل شوند. ازجهتی فعالیت سطحی بالا باعث می شود تا نانوکاتالیست ها با مواد معدنی نیز کامپوزیت تشکیل دهند. اصلاح شیمیایی نانوکاتالیست ها با اتصال گروه های مختلف تنوع زیادی را در عملکرد آن ها به وجود میآورد.
۷- منبع تهیه: نانوکاتالیست های طبیعی در طبیعت وجود دارند و در دسترس هستند. از این دسته می توان به نانوذرات خاک رس و نانوزئولیت ها اشاره کرد. دسته دیگر نانوکاتالیست های سنتزی هستند که توسط بشر تولید می شوند و تنوع زیادی دارند.
۱-۹-۲- نانو سیلیس به روش سل – ژل
روش سل- ژل یکی از روش های متعددی است که با بهره گرفتن از آن می توان نانوذرات مختلف را سنتز نمود. این روش با ساخت یک سل همگن از مواد آغازگر شروع می شود و سپس با شک تحریک شیمیایی سل به ژل تبدیل می شود. سپس به یکی از روش های معمول، حلال را از ساختار ژل بیرون کشیده و آن را خشک می کنند. بسته به نوع روش خشک کردن، محصول به دست آمده همچنین ویژگی های آن متفاوت خواهد بود. متناسب با کاربردی که ژل برای آن مقصود سنتز میشود، روش حلال زدایی می تواند متفاوت باشد. انواع این ژل های خشک کابردهای متنوعی در پوشش دهی سطوح، عایق کاری ساختمان، لباس های ویژه، و … دارد. ضمنا،ً اگر ژل را بوسیله آسیاب های ویژه پودر کنیم، می توانیم به ذراتی در مقیاس نانو دست یابیم.
فرایند سل ژل یک روش سنتز پایین به بالا است. در این فرایند، محصول حاصل از تعدادی واکنش های شیمیایی برگشت ناپذیر است. در حقیقت این واکنشها باعث تبدیل مولکولهای محلول همگن اولیه به عنوان سل، به یک مولکول نامحدود، سنگین و سه بعدی پلیمری به عنوان ژل میشوند. بطور نمونه میتوان واکنش هیدرولیزی که در پی آن واکنش تراکم رخ می دهد و محصول نهایی بدست می آید را به صورت زیر خلاصه کرد.
شکل(۱-۱۵) : مراحل تهیه سل-ژل
با مخلوط کردن نمک های اولیه متفاوت میتوان سامانه های دوتایی یا سه تایی تولید نمود. هر کدام از نمک های اولیه دارای سرعت واکنش مربوط به خودش است که این سرعت واکنش، بستگی به شرایطی چون pH، غلظت، حلال و دما دارد. ژل پلیمری ایجاد شده به صورت یک اسکلت سه بعدی شکل می گیرد که این امر باعث بهم پیوستن حفرات شده و پس از خشک شدن با جمع شدن و انقباض، ایجاد یک جامد صلب محکم میکنند. میتوان گفت که مواد نهایی و محصولات را میتوان به صورتی طراحی کرد، که باعث بوجود آمدن تخلخلهای نانو شود که در نتیجه آن، سطح ویژه بسیار بالاتری بدست خواهد آمد.
شکل( ۱-۱۶) : تصویر میکروسکوپ الکترونی تخلخل هایی در ابعاد نانووافزایش سطح
در فرایند سل- ژل، تبدیل سل به حالت ژل اغلب به وسیله تغییر pH و یا تغییر غلظت محلول حاصل می شود. دلایل اصلی استفاده از فرایند سل- ژل ، تولید محصولی با خلوص بالا، توزیع اندازه ذرات باریک و دست یافتن به نانو ساختاری یکنواخت در دمای پایین است. اغلب از روش سل–ژل برای تهیه نانو اکسید های فلزی بکار می برند.
همچنین میتوان با انجام فرآیندهای پوششدهی چرخشیو یا غوطهوری فیلمهای نازکبه ضخامت nm۵۰۰-۵۰ را بر روی یک زیر لایه تولید نمود. این فیلمهای نازک تولیدشده کاربردهای وسیعی از لحاظ الکترونیکی، کاربردهای سایشی یا شیمیایی دارند و علاوه بر این بر روی خواص اپتیکی نیز میتواند تأثیرگذار باشند .